主页 / 第一届国际云安全大会 / Defending Machine Learning against Adversarial Attacks

-
作者澳大利亚两院院士 Ramamohanarao Kotagiri
-
简介
- Deep Learning and Applications
- A Brief Overview of Deep Learning
- Adversarial and Fooling Samples
- Adversarial Noise
- Fooling Samples
- Training Robust Neural Networks(ICPR'16)
- The Random Projection Regularizer
- Intrinsic Dimensionality and Adversarial Robustness
- Deep Learning and Applications
-
援引http://www.icsc-csa.com/
-
提示本站仅做资料的整理和索引,转载引用请注明出处
相关推荐
-
2023-10-16 14:27:57.328910
-
2016-03-16 14:37:07
-
2019-08-26 07:09:02
-
2019-04-29 10:22:09
附件下载
-
Adversarial_learningCSC.pdf