主页 / 第一届国际云安全大会 / Defending Machine Learning against Adversarial Attacks
  • 作者
    澳大利亚两院院士 Ramamohanarao Kotagiri
  • 简介
    • Deep Learning and Applications
      • A Brief Overview of Deep Learning
    • Adversarial and Fooling Samples
      • Adversarial Noise
      • Fooling Samples
    • Training Robust Neural Networks(ICPR'16)
      • The Random Projection Regularizer
    • Intrinsic Dimensionality and Adversarial Robustness
  • 援引
    http://www.icsc-csa.com/
  • 提示
    本站仅做资料的整理和索引,转载引用请注明出处
附件下载
  • Adversarial_learningCSC.pdf
    时间: 大小: 16.38 M 下载: 22